

Technology characterisation of Gene Drives and potential applications - an introduction -

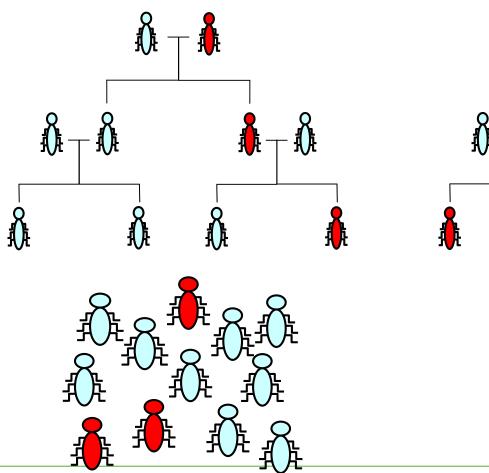
Bernd Giese¹, Johannes Frieß², Arnim von Gleich² ¹Institut für Sicherheits- und Risikowissenschaften (ISR), Universität für Bodenkultur, Wien ²Fachgebiet Technikgestaltung und Technologieentwicklung, Universität Bremen

Remote control of populations via a "genomic interface"?

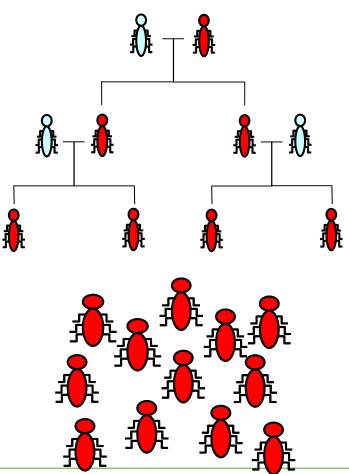
AT I

SETUP

ZOOM


EXIT

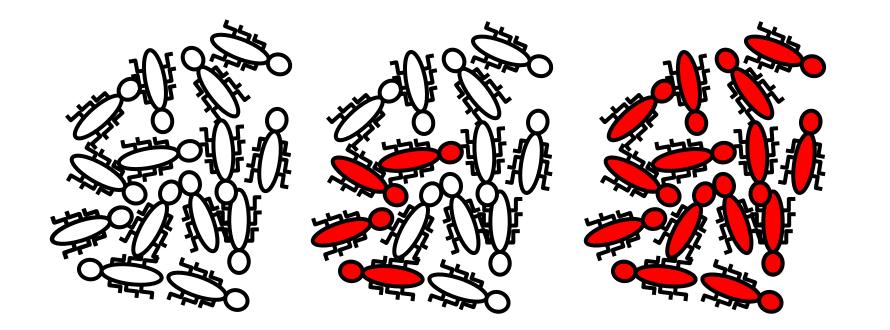
"Gene Drives"



Universität für Bodenkultur Wien

(Mendelian) inheritance of a Gene

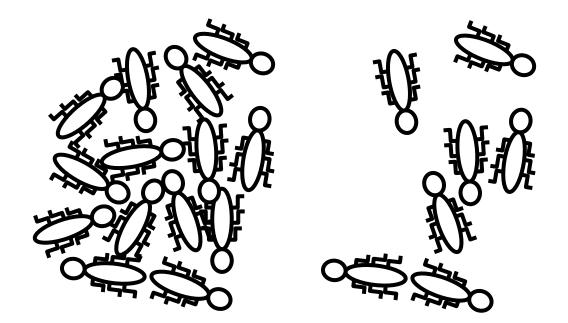
Gene Drive biased inheritance



Gene Drives as Conversion Drives

Universität für Bodenkultur Wien

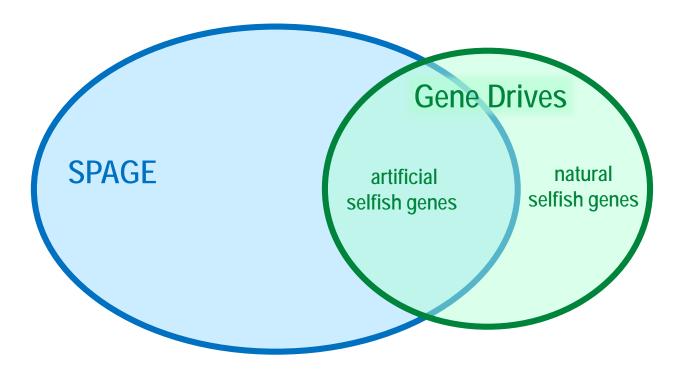
 \rightarrow Control by spread (of new traits)


time

Gene Drives as Suppression Drives

Universität für Bodenkultur Wien

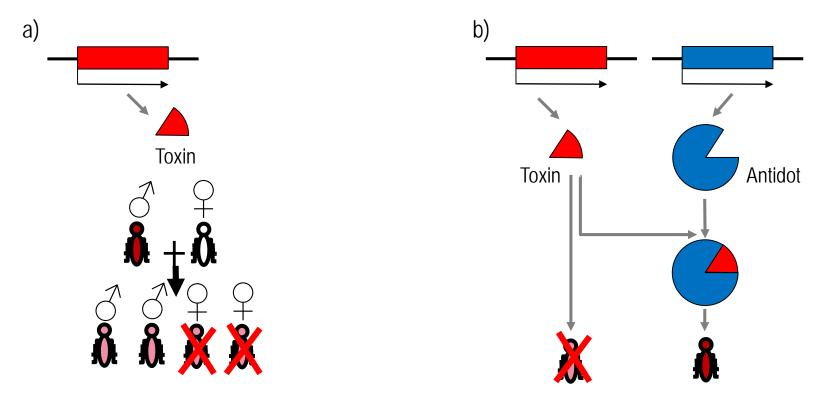
 \rightarrow Suppression or even eradication of populations



SPAGE-Technologies and Gene Drives

Universität für Bodenkultur Wien

SPAGE= self-propagating artificial genetic element

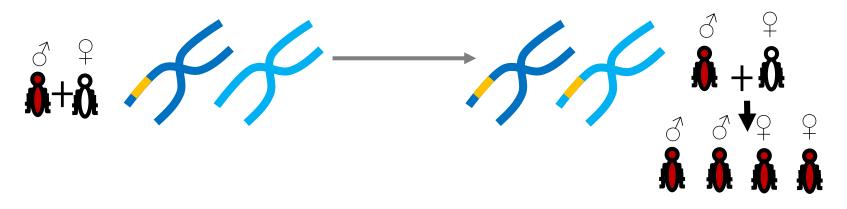

Types of SPAGE/Gene Drives

Universität für Bodenkultur Wien

Passive:

 Only offspring not targeted by a toxin or carrying a particular combination of genetic elements (toxin + antidot) survives

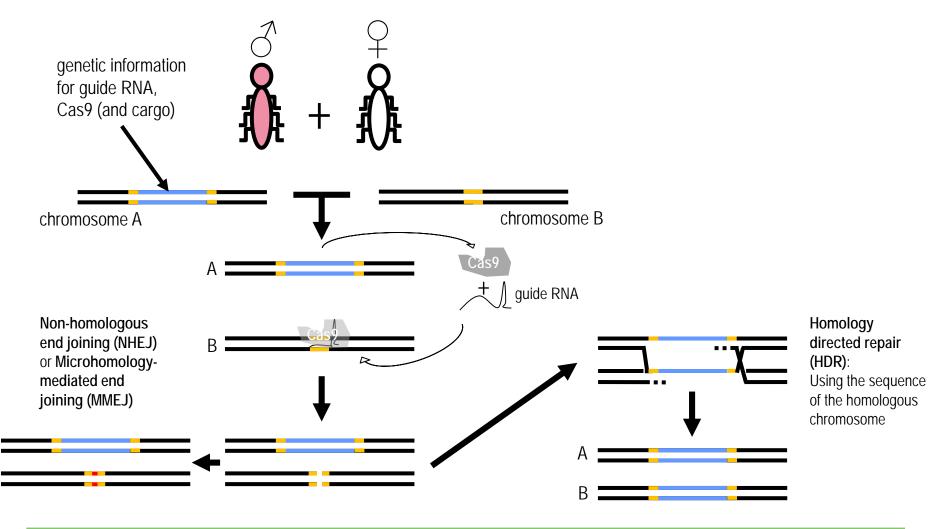
Types of SPAGE/Gene Drives



Universität für Bodenkultur Wien

Active (by genome modifications):

 Bias of sex ratio by (enzymatic) mechanisms influencing meiotic segregation (inhibition of sperm development) / shredding of the X-chromosome


"Copying" of genetic information between homologous chromosomes (using Homing Endonuclease Genes (HEG))

Mechanism of CRISPR/Cas9 – based Gene Drives

Universität für Bodenkultur Wien


High power by Homing Endonuclease based drives

Universität für Bodenkultur Wien

 for CRISPR/Cas9-based gene drives copying efficiencies of 91–99% can be achieved

(Gantz and Bier 2015; Gantz et al. 2015; Hammond et al. 2015 cited in Lin and Potter 2016)

A "mutagenic chain reaction"?

Cp. Gantz & Bier, Science, 24 APRIL 2015 • VOL 348 ISSUE 6233

Deficiencies of CRISPR/Cas-Gene drives

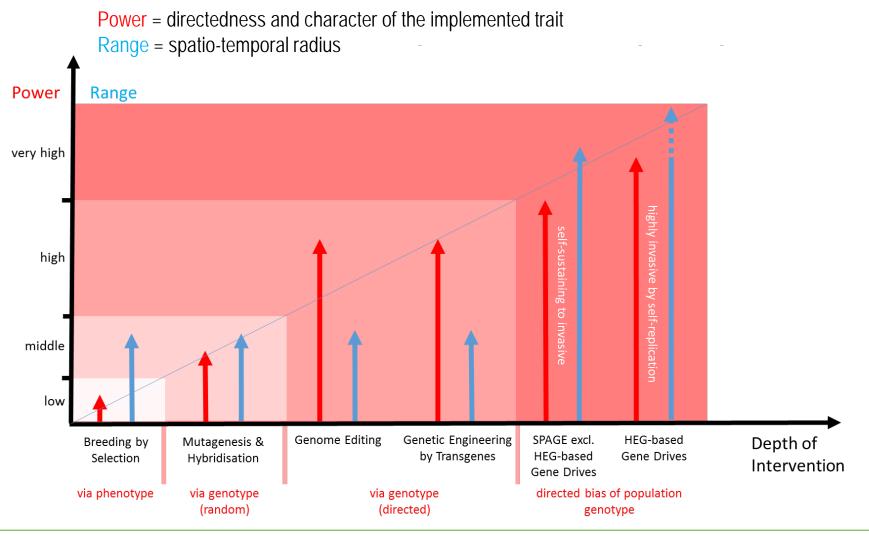
Universität für Bodenkultur Wien

Potential unintended effects and/or reduced power by:

- Non-homologous end joining (NHEJ) and Microhomology-mediated end joining (MMEJ) instead of Homology-directed repair (HDR) reduces the conversion rate and may cause resistance due to mutations, deletions etc.
- Resistance due to genomic variations (sequence polymorphisms), homing resistant alleles
- Maternal effects due to Cas9 deposit may cause resistance
- On-target misinsertions
- Off target-effects (unspecific binding of gRNA causes unintended insertions at different locations)
- Intragenomic interactions

No claim to be complete ...

Intervening in organisms


Universität für Bodenkultur Wien

- Gene Drives in general represent a **high depth of intervention** due to
 - the directed modification of the genome
 - the ability to bias the genotype of populations
 - Accordingly, it holds the potential for a
 - high technological power by its toxic / enzymatic mode of action and the option of cargo genes
 (→ hazard potential)
 - high range due to its influence on the pattern of heredity or even the capability of self-replication
 - (\rightarrow exposure potential/potential of contamination)

Depth of Intervention, Power and Range of generations of breeding technologies

Universität für Bodenkultur Wien

SPAGE = self-propagating artificial genetic elements ¹³

Gene Drives increase the range of genetic engineering

- Intended to spread in wild populations
- transform wild populations or even
- eliminate wild populations
 - → technological tipping point
 - shift of paradigms in the handling of GMOs

GMO = genetically modified organism

Applications of Gene Drives

Universität für Bodenkultur Wien

- Medical:
 - Immunization or elimination of disease vectors
- Agricultural:
 - Elimination of plant and animal pests
 - Control of pesticide-resistant weeds
- Ecosystem ,engineering':
 - Invasive species (e.g. in New Zealand)
 - Immunization of endangered species

Malaria and Dengue

Universität für Bodenkultur Wien

mage I

Malaria

- pathogen: 5 Plasmodium species
- vector: mainly 3 Anopheles mosquito species
- endemic in 91 countries
- 216 million new cases in 2016
- 445,000 deaths
- insecticide and drug resistances evolve

Dengue

- pathogen: Dengue Virus (4 serotypes)
- vector: Aedes mosquito genus
- endemic in ~100 countries
- ~93 million clinical cases/year
- ~22,000 deaths
- mostly preventive vector control

Invasive Species

New Zealand:

- initiative Predator Free 2050
- especially rats, stoats and possums
- gene drive application considered
- problem of confinement (global diffusion)

Spotted-Wing Fruit Fly in California:

- deposits eggs in cherries with an ovipositor
- Medea Gene Drive is considered to eradicate the fly / alter its ovipositor

By Martin Cooper from Ipswich, UK - Spotted-wing Drosophila (Drosophila suzukii) male, CC BY 2.0

"Weed"- Control

Universität für Bodenkultur Wien

- e.g., Palmer Amaranth
- infested agricultural fields (cotton etc.) in the Southern United States
- related species are cultivated crops in Mexico and South America (in China and India as well)

NAS-Report (2016): "What mechanisms are in place for dialogue with the Mexican national government? How will any concerns raised by the Mexican government be incorporated into US decision-making processes?"

Potential ecological effects

- Evolutionary effects:
 - gene flow
 - intraspecific (may influence fitness of GE- and wild population)
 - interspecific (interspecific mating may influence fitness of other species)
 - mutations of genetic information
 - evolution of resistance (→ blockade of gene drive spread)
- Ecological interactions:
- \rightarrow How many ecosystem processes are dependent upon the target species?
 - role of the species
 - resource/consumer (predator/prey), symbiont/parasite, disease vector, competitor,
 - Loss of ecosystem services? e.g., as pollinators
 - Cascading effects?
 - Loss of diversity?
 - Niche filling by alternative species?

Potential ecological effects depend

Universität für Bodenkultur Wien

... on the structure and vulnerability of the affected (eco-)system

Important aspects to consider:

- Critical elements in affected system?
- Structural instabilities?
- Potential tipping points?
- Adaptive capacity?
- Potential for self-repair?

 \rightarrow structural analysis of vulnerability

... on the character of the drive

Important aspects to consider:

- Exposure potential?
- Hazard potential?

 \rightarrow effect-related analysis of vulnerability

Universität für Bodenkultur Wien

- gene drives represent a "tipping point" of genetic engineering, because
 - power and range potentially exceed capabilities of previous stages in genetic enegineering ("active genetics"*)
 - gene drives are designed to
 - actively shape the genotype of wild populations and
 - engineer ecosystems by the conversion or suppression/elimination of wild populations
- in particular actively replicating drives based on homing endonuclease genes (e.g., CRISPR/Cas9) are probably highly invasive
- with potentially extreme power and range many open questions arise regarding effects, control and reversibility

→ urgent demand for prospective analysis of impact, side effects, countermeasures and the feasibility of low-risk approaches